
Clara Gaspar, May 2010 

SMI++

A Tool for the Automation of large 
distributed control systems



22Clara Gaspar, May 2010

Outline

❚ Some requirements of large control 
systems

❚ SMI++
❙ Methodology

❙ Tools

❚ Example: Usage in LHC experiments

❚ Some important features

❚ Conclusions



33Clara Gaspar, May 2010

Some Requirements
❚ Large number of devices/IO channels

➨  Need for Distributed Hierarchical Control
❘ De-composition in Systems, sub-systems, … , Devices

❘ Local decision capabilities in sub-systems

❚ Large number of independent teams and very different 
operation modes

➨  Need for Partitioning Capabilities (concurrent usage)

❚ High Complexity & Non-expert Operators

➨  Need for Full Automation of:
❘ Standard Procedures

❘ Error Recovery Procedures

➨  And for Intuitive User Interfaces 



44Clara Gaspar, May 2010

SMI++

❚ Method

❙ Classes and Objects
❘ Allow the decomposition of a complex system into 

smaller manageable entities

❙ Finite State Machines
❘ Allow the modeling of the behavior of each entity and 

of the interaction between entities in terms of 
STATES and ACTIONS

❙ Rule-based reasoning
❘ React to asynchronous events

(allow Automation and Error Recovery)



55Clara Gaspar, May 2010

SMI++

❚ Method (Cont.)

❙ SMI++ Objects can be:

❘ Abstract (e.g. a Run or the DCS System)

❘ Concrete (e.g. a power supply or a temp. sensor)

❙ Concrete objects are implemented externally 

either in "C", C++, or PVSS

❙ Logically related objects can be grouped inside 

"SMI domains" representing a given sub-system



66Clara Gaspar, May 2010

SMI++ Run-time Environment

ProxyProxyProxy

Hardware Devices

Obj

Obj

Obj

SMI Domain

ObjObjObj

Obj

Obj SMI Domain

❙ Device Level: Proxies
❘ C, C++, PVSS ctrl scripts

❘ drive the hardware:

〡deduceState

〡handleCommands

❙ Abstract Levels: Domains
❘ Internal objects

❘ Implement the logical model

❘ Dedicated language

❙ User Interfaces
❘ For User Interaction



77Clara Gaspar, May 2010

SMI++ - The Language

❙ SML –State Management Language
❘ Finite State Logic
〡Objects are described as FSMs

their main attribute is a STATE

❘ Parallelism
〡Actions can be sent in parallel to several objects. 

❘ Synchronization and Sequencing
〡The user can also wait until actions finish before sending the 

next one.

❘ Asynchronous Rules
〡Actions can be triggered by logical conditions on the state of 

other objects.



88Clara Gaspar, May 2010

SML example
❚ Device:

c lass : HighVoltage 
 s tate: NOT_RE ADY /initial_s tate 
  ac tion: G OTO_RE ADY 
   do S WITC H_ON PS 1 
   if ( PS 1 in_s tate ON ) then 
    move_to RE ADY 
   endif 
   move_to E RROR   
 s tate: RE ADY 
  when ( PS 1 in_s tate TRIP ) do RE C OVE R  
  when ( PS 1 not_in_s tate ON ) move_to NOT_RE ADY 
  ac tion: RE C OVE R 
   do RE S E T PS 1 
   do S WITC H_ON PS 1 
   … 
  ac tion: G OTO_NOT_RE ADY 
  … 
 s tate: E RROR 
  … 
 
objec t: S ubDetHV is _of_c las s  HighVoltage 

c las s : PowerS upply /as s oc iated 
 s tate: UNKNOWN /dead_s tate 
 s tate: OFF 
  ac tion : SWITC H_ON 
 s tate: ON 
  ac tion : SWITC H_OFF 
 s tate: TRIP 
  ac tion : RE SE T 
  … 
 
objec t: PS 1 is _of_c lass  PowerS upply 
 
 

❚ Sub System:



99Clara Gaspar, May 2010

SML example (many objs)

c las s : HighVoltage 
 s tate: NOT_RE ADY /initial_s tate 
  ac tion: G OTO_RE ADY 
   do SWITC H_ON all_in PS S  
   if (all_in PS S  in_s tate ON) then 
    move_to RE ADY 
   endif 
   move_to E RROR   
 s tate: RE ADY 
  when ( any_in PS S  in_s tate TRIP ) do RE C OVE R 
  when ( any_in PS S  not_in_s tate ON ) move_to NOT_RE ADY 
  ac tion: RE C OVE R 
   do RE S E T all_in PS S  
   do SWITC H_ON all_in PS S  
   … 
  ac tion: G OTO_NOT_RE ADY 
  … 
 s tate: E RROR 
  … 
 
objec t: SubDetHV is _of_c lass  HighVoltage 

c las s : PowerS upply /ass oc iated 
 s tate: UNKNOWN /dead_s tate 
 s tate: OFF 
  ac tion : S WITC H_ON 
 s tate: ON 
  ac tion : S WITC H_OFF 
 s tate: TRIP 
  ac tion : RE S E T 
  … 
 
object: PS 1 is_of_c lass  PowerS upply 
object: PS 2 is_of_c lass  PowerS upply 
object: PS 3 is_of_c lass  PowerS upply 
…  
 
objectset: PS S  {PS 1, PS 2, PS 3, …} 
 
 

❚ Devices: ❚ Sub System:

❚ Objects can be dynamically 
included/excluded in a Set



1010Clara Gaspar, May 2010

SML example (automation)

object: RUN_CONTROL 
 state: TEST_MODE 
  when (LHC::STATE in_state PHYSICS) do PHYSICS 
  action: PHYSICS 
   do GOTO_READY SubDetHV 
   … 
   move_to PHYSIC S_MODE   
 state: PHYSICS_MODE 
  … 

object: LHC ::S TATE  /as soc iated 
 s tate: UNKNOWN /dead_s tate 
 s tate: PHYS IC S  
 s tate: S E TUP 
 s tate: OFF 
  …  

❚ External Device:

❚ Sub System:

❚ Objects in different domains can be 
addressed by: <domain>::<object>



1111Clara Gaspar, May 2010

SMI++ Run-time Tools

ProxyProxyProxy

Hardware Devices

Obj

Obj

Obj

SMI Domain

ObjObjObj

Obj

Obj SMI Domain

❙ Device Level: Proxies
❘ C, C++, PVSS ctrl scripts
❘ Use a Run Time Library: smirtl

To Communicate with their domain

❙ Abstract Levels: Domains
❘ A C++ engine: smiSM - reads the 

translated SML code and instantiates 
the objects

❙ User Interfaces
❘ Use a Run Time Library: smiuirtl

To communicate with the domains

❙ All Tools available on: 
❘ Windows, Unix (Linux), etc.

❙ All Communications are dynamically 
(re)established



1212Clara Gaspar, May 2010

SMI++ History

❙ A top level domain:
Big-Brother automatically piloted 
the experiment

❚ 1997: Rewritten in C++

❚ 1999: Used by BaBar for the 
Run-Control and high level 
automation (above EPICS)

❚ 2002: Integration with PVSS 
for use by the 4 LHC exp.

❚ 1989: First implemented for DELPHI in ADA
Thanks to M. Jonker and B. Franek in Delphi and the CERN DD/OC group 
(S. Vascotto, P. Vande Vyvre et al.)

❙ DELPHI used it in all domains: DAQ, DCS, Trigger, etc.

➨ Has become a very powerful, time-tested, robust, toolkit 



1313Clara Gaspar, May 2010

❚ The JCOP Framework is based on:

❙ SCADA System - PVSSII for:
❘ Device Description (Run-time Database)

❘ Device Access (OPC, Profibus, drivers) + DIM

❘ Alarm Handling (Generation, Filtering, Masking, etc)

❘ Archiving, Logging, Scripting, Trending

❘ User Interface Builder

❘ Alarm Display, Access Control, etc. 

❙ SMI++ providing:
❘ Abstract behavior modeling (Finite State Machines)

❘ Automation & Error Recovery (Rule based system)

LHC Exp.: Framework
D

ev
ic

e 
U

ni
ts

C
on

tr
ol

 U
ni

ts



1414Clara Gaspar, May 2010

Ex: Generic LHC(b) Architecture

LV

Dev1

LV

Dev2

LV

DevN

DCS

SubDetN

DCS

SubDet2

DCS

SubDet1

DCS

SubDet1

LV

SubDet1

TEMP

SubDet1

GAS

…

…

C
o

m
m

a
n

d
s

Control

Unit

Device

Unit

DAQ

SubDetN

DAQ

SubDet2

DAQ

SubDet1

DAQ

SubDet1

FEE

SubDet1

RO

FEE

Dev1

FEE

Dev2

FEE

DevN

…

…

Legend:

INFR. TFC LHC

ECS

HLT

S
ta

tu
s 

&
 A

la
rm

s



1515Clara Gaspar, May 2010

Device Units
❚ Provide access to “real” devices:
❙ The Framework provides (among others):
❘ “Plug and play” modules for commonly used equipment. 

For example: 
〡CAEN or Wiener power supplies (via OPC)

〡LHCb CCPC and SPECS based electronics (via DIM)

❘ A protocol (DIM) for interfacing 
“home made” devices. For example:
〡Hardware devices like a calibration source 

〡Software devices like the Trigger processes 
(based on LHCb’s offline framework – GAUDI)

❘ Each device is modeled as a Finite State Machine
➨ Corresponds to an SMI++ Proxy

Device

Unit



1616Clara Gaspar, May 2010

Hierarchical control
❚ Each Control Unit:
❙ Is defined as one or more Finite State Machines
➨ Corresponds to an SMI++ Domain

❙ Can implement rules based on its children’s states

❙ In general it is able to:
❘ Summarize information (for the above levels)

❘ “Expand” actions (to the lower levels)

❘ Implement specific behaviour
& Take local decisions
〡Sequence & Automate operations

〡Recover errors

❘ Include/Exclude children (i.e. partitioning)
〡Excluded nodes can run is stand-alone

❘ User Interfacing
〡Present information and receive commands

DCS

Muon

DCS

Tracker

DCS
…

Muon

LV

Muon

GAS

Control

Unit



1717Clara Gaspar, May 2010

PVSS/SMI++ Integration
❚ Graphical Configuration

of SMI++ Using PVSS

➨ Easy to learn SML



1818Clara Gaspar, May 2010

PVSS/SMI++ Integration

❚ Building Hierarchies
❙ Distributed over 

several machines
❘ "&" means reference to 

a CU in another system

❙ Editor Mode:
❘ Add / Remove / Change 

Settings

❙ Navigator Mode
❘ Start / Stop / View



1919Clara Gaspar, May 2010

PVSS/SMI++ Integration

❚ Dynamically generated operation panels
(Uniform look and feel) ❚ Configurable 

User Panels
and Logos

❚ “Embedded” standard partitioning rules:
❙ Take

❙ Include

❙ Exclude

❙ Etc.



2020Clara Gaspar, May 2010

“raw” SMI++ vs JCOP FW

❚ SMI++ is a very powerful tool
❙ Its usage needs some training and experience
❘ Learn the Language and the tools

❘ Need to develop software using the libraries
〡To interface devices and to build User Interfaces

❘ Define rules and guidelines for developers

❚ While if using the JCOP FW:
❘ No need for software development

❘ Graphic editing of the objects and their behaviour

❘ All objects “inherit” the partitioning rules

❘ JCOP provides training courses



2121Clara Gaspar, May 2010

❚ Size of the Control Tree:
❙ Distributed over ~150 PCs
❘ ~100 Linux

(50 for the HLT)

❘ ~ 50 Windows

❙ >2000 Control Units

❙ >30000 Device Units

❚ The Run Control can be seen as:
❙ The Root node of the tree

➨ If the tree is partitioned there can be
 several Run Controls.

LHCb Example: Run Control

DCS

SubDetN

DCS

SubDet1

DCS
…

DAQ

SubDetN

DAQ

SubDet1

DAQ
…

HV TFC LHCHLT

SubDet1

ECS

XX



2222Clara Gaspar, May 2010

Domain

X

Sub-Detector

Run Control

❚ Matrix

❚ Activity

❚ SMI++

Used for
Configuring all Sub-Systems

   Accepts
command

parameters



2323Clara Gaspar, May 2010

Features of SMI++

❚ Task Separation:
❙ SMI Proxies execute only basic actions – 

Minimal intelligence
❘ Good practice: Proxies know “what” to do but not “when”

❙ SMI Objects implement the logic behaviour

❙ Advantages:
❘ Change the HW 

-> change only the Proxy

❘ Change logic behaviour
sequencing and dependency of actions, etc 
-> change only SMI rules



2424Clara Gaspar, May 2010

Features of SMI++

❚ Sub-system integration

❚ SMI++ allows the integration of 
components at various different levels:
❙ Device level (SMI++ All the way to the bottom)

❘ Each Device is modeled by a Proxy

❙ Any other higher level (simple SMI++ interface)

❘ A full Sub-system can be modeled by a Proxy

❘ Examples:
〡The Gas Systems (or the LHC) for the LHC experiments

〡Slow Control Sub-systems (EPICS) in BaBar



2525Clara Gaspar, May 2010

Features of SMI++

❚ Distribution and Robustness:
❙ SMI Proxies and SMI domains can run 

distributed over a large number of 
heterogeneous machines

❙ If any process dies/crashes/hangs:
❘ Its “/dead_state” is propagated as current state

❙ When a process restarts (even on a different machine)

❘ All connections are dynamically re-established

❘ Proxies should re-calculate their states

❘ SMI Objects will start in “/initial_state” and can 
recover their current state (if rules are correct)

c las s : PowerS upply /ass oc iated 
 s tate: UNKNOWN /dead_s tate 
 s tate: OFF 
  ac tion : S WITC H_ON 
 s tate: ON 
  ac tion : S WITC H_OFF 
 s tate: TRIP 
  ac tion : RE S E T 
  … 
 
objec t: PS 1 is_of_c lass  PowerSupply 
 
 

c lass : HighVoltage 
 s tate: NOT_RE ADY /initial_s tate 
  when ( any_in PSS  in_s tate TRIP ) move_to E RROR 
  when ( all_in PS S  in_s tate ON ) move_to RE ADY 
  ac tion: G OTO_RE ADY 
   do SWITC H_ON all_in PSS  
   if (all_in PSS  in_s tate ON) then 
    move_to RE ADY 
   endif 
   move_to E RROR   
 s tate: RE ADY 
  … 
 s tate: E RROR 
  … 
 
objec t: SubDetHV is _of_c las s  HighVoltage 



2626Clara Gaspar, May 2010

Features of SMI++

❚ Error Recovery Mechanism
❙ Bottom Up
❘ SMI Objects react to changes of their children
〡In an event-driven, asynchronous, fashion

❙ Distributed
❘ Each Sub-System can recover its errors
〡Normally each team knows how to recover local errors

❙ Hierarchical/Parallel recovery

❙ Can provide complete automation even for 
very large systems



2727Clara Gaspar, May 2010

Conclusions

❚ SMI++ is:
❙ A well tested, and very robust tool

❙ Not only a Finite State Machine toolkit

❙ But has also “Expert System” capabilities
❘ Advantage: Decentralized and distributed 

knowledge base

❙ Using the JCOP FW instead of directly SMI+
+ has many advantages…



2828Clara Gaspar, May 2010

Spare slides



2929Clara Gaspar, May 2010

SMI++ Declarations

❚ Classes, Objects and ObjectSets
❚ class: <class_name> [/associated]

❙ <parameter_declaration>

❙ <state_declaration>

❘ <when_list>

❘ <action_declaration>

〡<instruction_list>

❙ …

❚ object: <object_name> is_of_class <class_name>

❚ objectset: <set_name> [{obj1, obj2, …, objn}]



3030Clara Gaspar, May 2010

SMI++ Parameters

❚ <parameters>
❙ SMI Objects can have parameters, ex:
❘ int n_events, string error_type

❙ Possible types:
❘ int, float, string

❙ For concrete objects
❘ Parameters are set by the proxy 

(they are passed to the SMI domain with the state)

❙ Parameters are a convenient way to pass extra 
information up in the hierarchy



3131Clara Gaspar, May 2010

SMI++ States

❚ state: <state_name> [/<qualifier>]
❙ <qualifier>
❘ /initial_state

For abstract objects only, the state the object 
takes when it first starts up

❘ /dead_state
For associated objects only, the state the object 
takes when the proxy or the external domain is not 
running 



3232Clara Gaspar, May 2010

SMI++ Whens

❚ <when_list>
❙ Set of conditions that will trigger an object 

transition. "when"s are executed in the order 
they are declared (if one fires, the others 
will not be executed).

❙ state: <state>
❘ when (<condition>) do <action>

❘ when (<condition>) move_to <state>



3333Clara Gaspar, May 2010

SMI++ Conditions

❚ <condition>
❙ Evaluate the states of objects or objectsets

❘ (<object> [not_]in_state <state>)

❘ (<object> [not_]in_state {<state1>, <state2>, …})

❘ (all_in <set> [not_]in_state <state>)

❘ (all_in <set> [not_]in_state {<state1>, <state2>, …})

❘ (any_in <set> [not_]in_state <state>)

❘ (any_in <set> [not_]in_state {<state1>, <state2>, …})

❘ (<condition> and|or <condition>)



3434Clara Gaspar, May 2010

SMI++ Actions

❚ action: <action_name> [(parameters)]
❙ If an object receives an undeclared action (in 

the current state) the action is ignored.
❙ Actions can accept parameters, ex:
❘ action: START_RUN (string run_type, int run_nr)

❙ Parameter types:
❘ int, float and string

❙ If the object is a concrete object
❘ The parameters are sent to the proxy with the action

❙ Action Parameters are a convenient way to send 
extra information down the hierarchy  



3535Clara Gaspar, May 2010

SMI++ Instructions

❚ <instructions>
❙ <do>
❙ <if>
❙ <move_to>
❙ <set_instructions>
❘ insert <object> in <set>
❘ remove <object> from <set>

❙ <parameter_instructions>
❘ set <parameter> = <constant>
❘ set <parameter> = <object>.<parameter>
❘ set <parameter> = <action_parameter>



3636Clara Gaspar, May 2010

SMI++ Instructions

❚ <do> Instruction
❙ Sends a command to an object. 

❙ Do is non-blocking, several consecutive "do"s 
will proceed in parallel.
❘ do <action> [(<parameters>)] <object>

❘ do <action> [(<parameters>)] all_in <set>

❘ examples:
〡do START_RUN (run_type = "PHYSICS", run_nr = 123) X

〡action: START (string type)

❘ do START_RUN (run_type = type) EVT_BUILDER



3737Clara Gaspar, May 2010

SMI++ Instructions

❚ <if> Instruction
❙ "if"s can be blocking if the objects involved in 

the condition are "transiting". The condition 
will be evaluated when all objects reach a 
stable state.
❘ if <condition> then

〡<instructions>

❘ else

〡<instructions>

❘ endif



3838Clara Gaspar, May 2010

SMI++ Instructions

❚ <move_to> Instruction
❙ "move_to" terminates an action or a when 

statement. It sends the object directly to 
the specified state. 
❘ action: <action>

〡…

〡move_to <state>

❘ when (<condition>) move_to <state>



3939Clara Gaspar, May 2010

Future Developments

❚ SML Language
❙ Parameter Arithmetics
❘ set <parameter> = <parameter> + 2

❘ if (<parameter> == 5)

❙ wait(<obj_list)

❙ for instruction
❘ for (dev in DEVICES)

〡if (dev in_state ERROR) then

❘ do RESET dev

〡endif

❘ endfor



4040Clara Gaspar, May 2010

SML – The Language

❚ An SML file corresponds to an SMI 
Domain. This file describes:
❙ The objects contained in the domain

❙ For Abstract objects:
❘ The states & actions of each

❘ The detailed description of the logic behaviour of 
the object

❙ For Concrete or External (Associated) 
objects
❘ The declaration of states & actions


	SMI++
	Outline
	Some Requirements
	Страница 4
	Страница 5
	SMI++ Run-time Environment
	SMI++ - The Language
	SML example
	SML example (many objs)
	SML example (automation)
	SMI++ Run-time Tools
	SMI++ History
	LHC Exp.: Framework
	Ex: Generic LHC(b) Architecture
	Device Units
	Hierarchical control
	PVSS/SMI++ Integration
	Страница 18
	Страница 19
	“raw” SMI++ vs JCOP FW
	LHCb Example: Run Control
	Run Control
	Features of SMI++
	Страница 24
	Страница 25
	Страница 26
	Conclusions
	Spare slides
	SMI++ Declarations
	SMI++ Parameters
	SMI++ States
	SMI++ Whens
	SMI++ Conditions
	SMI++ Actions
	SMI++ Instructions
	Страница 36
	Страница 37
	Страница 38
	Future Developments
	SML – The Language

