
 

      
Abstract--In the SMI++ framework, the real world is viewed as 

a collection of objects behaving as finite state machines. These 
objects can represent real entities, such as hardware devices or 
software tasks, or they can represent abstract subsystems. A 
special language (SML) is provided for the object description. 
The SML description is then interpreted by a Logic Engine 
(coded in C++) to drive the Control System. This allows rule 
based automation and error recovery. SMI++ objects can run 
distributed over a variety of platforms, all communication being 
handled transparently by an underlying communication system - 
DIM. This framework has been first used by the DELPHI 
experiment at CERN for the experiment control. BaBar 
experiment at SLAC has adopted this framework for the design 
and implementation of their Run Control system. For this 
purpose the framework was significantly upgraded. The BaBar 
Run Control and the underlying SMI++ framework has been in 
production since the beginning of 1999.  SMI++ has recently been 
adopted at CERN by all LHC experiments for their detector 
control systems as recommended by the Joint Controls Project. 
The main features of the framework and in particular of SML 
language as well as recent and near future upgrades will be 
discussed. SMI++ has, so far, been used only by large particle 
physics experiments. It is, however, equally suitable for any other 
control applications.   

I. INTRODUCTION 

 SMI++ is based on the original State Manager concept [1] 
which was developed by the DELPHI experiment [2] in 
collaboration with the DD/OC group of CERN. 

Since then, the concept has undergone substantial 
development through a series of upgrades. These were 
primarily dictated by the user requirements within the 
experiments which adopted it as a tool for designing their 
experiment control. The first significant upgrade (SMI++) was 
completed in June 1997. This consisted of re-writing its most 
important tool, State Manager, from ADA to C++. In July 
1997 it was extensively tested in DELPHI environment. 
During that time, the DELPHI experiment control was fully 
converted from using the 'old' version of SMI to the upgraded 
version SMI++. At that time it was also adopted by BaBar 
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experiment [3] at SLAC for the design and implementation of 
their Run Control. From then on, it has been further upgraded 
in smaller steps, increasing its flexibility, capabilities and 
efficiency. 

 
Fig. 1. Basic concepts of SMI++ 
 
 Recently, all four LHC experiments at CERN [4]-[7] decided 
to use it either fully or partially for their experiment control. 
Through this use by major particle experiments and continuous 
user feedback, SMI++ has become a well proven, robust and 
time tested tool. 

II. BASIC CONCEPTS 
The real world to be controlled is typically a set of concrete 

entities such as hardware devices or software tasks. In SMI++ 
framework this world is described as a collection of objects 
behaving as Finite State Machines (FSM). These objects are 
called associated objects because they are associated with an 
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actual piece of hardware or a real software task. Each of these 
objects interacts with the concrete entity it represents, through 
a so called proxy process. The proxy process provides a bridge 
between the real and the SMI++ world while fulfilling two 
functions. Firstly it follows and simplifies the behavior of the 
concrete entity and secondly it sends to it commands 
originating from the associated object.  

By analogy, the control system to be designed is conceived 
as a set of abstract (or logical) objects behaving as FSMs. 
They represent abstract entities and contain the control logic. 
They can also send commands to other objects (associated or 
abstract) 

 
 
Fig. 2. Basic concepts of SMI++. Hierarchy of domains. 
 

The main attribute of an SMI++ object is its state. In each 
state it can accept commands that trigger actions. An abstract 
object, while executing an action, can send commands to other 
objects, interrogate the states of other objects and eventually 
change its own state. It can also spontaneously respond to state 
changes of other objects. The associated objects only pass on 
the received commands to the proxy processes. 

In order to reduce complexity of large systems, logically 
related objects are grouped into SMI++ domains. In each 
domain, the objects are organized in a hierarchical structure 
and form a subsystem control. Usually only one object (top 
level object) in each domain is accessed by other domains. The 
final control system is then constructed as a hierarchy of 

SMI++ domains.  These basic concepts are graphically 
summarized in Fig. 1. and Fig. 2. 
 The framework consists of a set of tools. The most 
important are State Manager Language (SML), State Manager 
process (SM) and Application Program Interface (API). 

III. STATE MANAGER LANGUAGE  
The tool used to formally describe the object model of the 

real world and of the control system is State Manager 
Language . 

 
Fig. 3.  Example of SML code 
 
 This language allows for detailed specification of the objects 
such as their states, actions and associated conditions. The 
main characteristics of this language are: 

• Finite State Logic 
Objects are described as finite state machines. The main 

attribute of an object is its state. Commands sent to an object 
trigger object actions that can bring about a change in its state. 

• Sequencing 
An action performed by abstract object is specified as a 

sequence of instructions. These consist mainly of commands 
sent to other objects and of logical tests on states of other 
objects. Commands sent to objects representing concrete 



 

entities (associated objects) are sent off as messages to the 
proxy processes. 

• Asynchronous behavior 
In principle, all actions proceed in parallel. A command sent 

by object-A to object-B does not suspend the instruction 
sequence of object-A (i.e. object-A does not wait for 
completion of the command sent to object-B before it 
continues with its instruction sequence). Only a test by object-
A on the state of object-B suspends the instruction sequence of 
object-A until object-B reaches a stable state. 

• AI-like rules 
Each object can specify logical conditions based on states of 

other objects. These, when satisfied, will trigger an execution 
of the action specified in the condition. This provides the 
mechanism for an object to respond to unsolicited state 
changes of other objects in the system. 

 
Example of SML code is shown in Fig. 3. 

IV. STATE MANAGER PROCESS  
This is the key tool of the SMI++ framework. At run-time, it 

organizes and synchronizes activities performed by 
independent hardware components assigned to the domain and 
possibly objects in other domains. It does this by using the 
SML code for the domain. It responds to external events and 
'drives' the control system by following the coded control logic 
and by sending the necessary commands to proxies and objects 
in other domains. It was designed using an Object Oriented 
design tool (Rational Rose/C++) [8] and coded in C++. Its 
main C++ classes are shown in Fig. 4. They are grouped into 
two class categories:   

• SML Classes 
These classes represent all the elements defined in the 

language such as states, actions, instructions etc. They are all 
contained within the SMIObject class (representing SMI++ 
objects). At the startup of the process, they are instantiated 
from the  SML code. 

• Logic Engine Classes 
Based on external events, these classes 'drive' the 

instantiations of the language classes.  
CommHandler takes care of all the communication issues. 

It detects state changes in remote SMI++ objects and 'feeds' the 
state queue (StateQ). It receives external actions coming from 
remote objects or from an operator and 'feeds' the relevant 
queue (ExternalActionQ). It also communicates the state 
changes in local SMI++ objects to the outside world and sends 
commands from local SMI ++objects to remote objects. 

Scheduler takes the information from the state and action 
queues and operates on the SMIObject instantiations in such a 
way that in effect each local object executes its own thread. 
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 Fig. 4. Main classes of the State Manager. 

V. APPLICATION PROGRAM INTERFACE 

There are two API libraries available to application designers, 
in C, C++ and FORTRAN: 

1. SMIRTL library 
It provides the routines used by proxies to connect and to 

transmit state changes to their associated objects in the SMI++ 
world and to receive commands from them. 

2. SMIUIRTL library 
It provides the routines used by the processes that require 

information about the states of objects in the running system. 
This information is provided in an asynchronous manner – the 
process is notified about the state change as soon as it happens. 
The library also provides the routines to send commands to 
any object in the running system. An example of such a 
process is a user interface. 

There is a generic User interface provided. It is 
configurable, i.e. the monitored objects can be selectively 
displayed, moved around the display etc. It is based on Motif. 
However, we found from experience, that users generally 
prefer to write their own user interfaces tailored to the specifics 
of their control systems. 

VI. DISTRIBUTED ENVIRONMENTS 

State Manager processes representing SMI++ domains can 
run on a variety of computer platforms. The cooperation 



 

between the domains including all exchanges between objects, 
are embedded in the SMI++ system. All issues related to 
distribution and heterogeneity of platforms are transparently 
handled by the underlying communication system DIM [9] on 
top of TCP/IP. The asynchronous communication mechanism 
allows the objects to operate in parallel when required.  

At run time, no matter where a SMI++ process (State 
Manager or proxy) runs, it is able to communicate with any 
other process in the system independently of where the 
processes are located. At user level, the name of the object and 
its domain uniquely determine its location (address). Processes 
can move freely from one machine to another and all 
communications are automatically re-established. This feature 
also allows for machine load balancing.  

The communication layer also provides an automatic 
recovery from crash situations such as restarting a process. 

SMI++ is available on any mixed environments comprising: 
VMS (VAX and ALPHA) and UNIX flavors (OSF, AIX, 
HPUX, SunOS, Solaris), Linux, Windows, OS9, LynxOS and 
VXWorks 

VII.  USE OF SMI++ IN DELPHI 
In DELPHI the full online system was designed and 

implemented using this framework. The various areas of 
DELPHI have been mapped into SMI++ domains: sub-detector 
domains, DAS domain, SC domain, TRIGGER domain, etc. 
The full system consisted of about 1000 objects in 50 different 
domains and distributed over 40 computers.  

A high level of automation of the experiment's control 
system was very important in order to avoid human mistakes 
and to speed up standard procedures. 

Using the SMI++ framework, the creation of a top level 
domain ‘BIG BROTHER’ which contained the logic allowing 
interconnection of the underlying domains (LEP, DAS, SC, 
etc.) was a relatively easy task. 

Under normal running conditions BIG BROTHER piloted 
the system with minimal operator intervention. During test and 
setup periods the human operator effectively replaced the top-
level object and using the user-interfaces he could send 
commands to any SMI++ domain. 

 

VIII. USE OF SMI++ IN BABAR  
BaBar is a detector that has been designed and built by a 

large international collaboration of physicists. The 
collaboration includes over 550 physicists and engineers from 
the USA, Canada, China, France, Germany, Italy, Norway, 
Russia, and the United Kingdom. There are currently 72 
collaborating institutions. The detector is exploiting the PEP-II 
facility at SLAC, Stanford, California, USA. Its primary 
purpose is to study matter-antimatter asymmetry in electron-
positron collisions. It does this by collecting and subsequent 
studying collision events in which pairs of B mesons are 
produced. Since its startup in 1999 it has so far collected 200 

million of such events. The detector consists of many complex 
sub-systems and weights 1200 ton. 
 The Run Control was designed, using the SMI++ 
framework, during 1997-1998 and the first prototype was 
installed in the second half of 1998, ready for the subsystem 
groups to test their equipment. 

Partial, simplified and SMI++ biased view of the system is 
shown in Fig. 5. At the top of the hierarchy is SMI++ domain 
which in Fig. 5. is called ‘Master’. It monitors and controls the 
BaBar detector hardware such as HV power supplies through 
the subdetector domains (DCH, DRC,…) It monitors and 
controls the Data Acquisition system of the BaBar detector 
through set of proxy processes (see oval shapes in the Fig. 5.). 
It also communicates with a database from where it retrieves 
parameters needed for various running conditions. It also 
monitors the status of the PEP-II accelerator. These tasks are 
again performed using proxy processes. Under normal running 
conditions during data-taking, ‘Master’ monitors, synchronizes 
and controls its subsystems fully automatically with minimal 
human intervention. The most important input for this 
operation is the status of PEP-II accelerator. 

 
Fig. 5. Schematic diagram of BaBar Run Control 
 
The ‘Master’ controls yet another part of the BaBar Run 

Control which handles the calibration of sub-detectors. For the 
lack of space and in the interest of simplicity, it is not shown in 
Fig. 5.  It consists of 7 domains and dozens of proxy processes. 

Since its first prototype, the BaBar Run Control has been 
developed in response to the experience gained from running 
the experiment. The inherent flexibility and modularity of the 



 

underlying tool, SMI++, made this development a relatively 
easy task. 
 

IX.  USE OF SMI++ IN LHC EXPERIMENTS 
The four LHC experiments at CERN have combined efforts 

by creating a common control project – the Joint Controls 
Project – JCOP, in order to develop a control Framework that 
will be used by  different sub-systems to control their 
equipment. 

JCOP has chosen SMI++ as a Finite State Machine toolkit to 
complement the commercial SCADA (Supervisory Control 
and Data Acquisition) system that provides the basis for 
implementing the common control Framework. 

The selected SCADA system – PVSS II, provides very 
useful functionality, like a run-time data base, alarm handling, 
archiving, a user interface builder, etc but no tools for abstract 
behavior modeling. SMI++ has been integrated with PVSSII 
and can thus be used as a component of the Framework. 

In this Framework, SMI++ by means of the PVSSII toolkit, 
has been complemented with a graphic tool to edit and 
generate the SML code and with a database that allows the 
archiving of the objects and their states. In order to cope with 
the common requirements of the four experiments, standard 
objects are also included by default in all SMI++ domains, 
providing standard functionality like partitioning, i.e. allowing 
sub-systems to be excluded or included in the control hierarchy 
or the enabling/disabling of devices. 

All four experiments will use the Finite State Machine 
component (SMI++) of the framework but to different degrees: 
ATLAS and CMS will use it for the monitoring and control of 
their Detector Control Systems (DCS), while LHCb and 
ALICE will use it for the automation of the complete 
experiment. The schematic view of the LHCb control 
hierarchy  is shown in Fig.  6. as an example. 

 
 
Fig. 6.  Schematic diagram of control hierarchy of LHCb experiment 

X. CONCLUSION 
 The SMI++ framework is a powerful tool which, while 

merging the concepts of object modeling and finite state 
machines, allows the implementation of a homogeneous, 
integrated control system by providing a standardized 

approach to the control of all types of devices from hardware 
equipment to software tasks. From a logical point of view, all 
devices are mapped into, controlled and monitored by, and 
integrated into higher level control entities. These entities are 
then  responsible for the correlation of events and for the 
overall coordination, automation and operation of the full 
system in its different running modes. The system is typically 
distributed over a set of heterogeneous platforms. 

This is achieved by using various SMI++ tools i.e. State 
Manager Language, State Manager etc. 

The SMI++ framework has become a time tested, robust 
tool through its use by major particle experiments: the 
DELPHI experiment at CERN in the recent past, the BaBar 
experiment at SLAC, which is currently using it in production 
and finally all four LHC experiments at CERN which are now 
using it for the design of either full or partial experiment 
control. 
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