

Abstract--In the SMI++ framework, the real world is viewed as

a collection of objects behaving as finite state machines. These
objects can represent real entities, such as hardware devices or
software tasks, or they can represent abstract subsystems. A
special language (SML) is provided for the object description.
The SML description is then interpreted by a Logic Engine
(coded in C++) to drive the Control System. This allows rule
based automation and error recovery. SMI++ objects can run
distributed over a variety of platforms, all communication being
handled transparently by an underlying communication system -
DIM. This framework has been first used by the DELPHI
experiment at CERN for the experiment control. BaBar
experiment at SLAC has adopted this framework for the design
and implementation of their Run Control system. For this
purpose the framework was significantly upgraded. The BaBar
Run Control and the underlying SMI++ framework has been in
production since the beginning of 1999. SMI++ has recently been
adopted at CERN by all LHC experiments for their detector
control systems as recommended by the Joint Controls Project.
The main features of the framework and in particular of SML
language as well as recent and near future upgrades will be
discussed. SMI++ has, so far, been used only by large particle
physics experiments. It is, however, equally suitable for any other
control applications.

I. INTRODUCTION

 SMI++ is based on the original State Manager concept [1]
which was developed by the DELPHI experiment [2] in
collaboration with the DD/OC group of CERN.

Since then, the concept has undergone substantial
development through a series of upgrades. These were
primarily dictated by the user requirements within the
experiments which adopted it as a tool for designing their
experiment control. The first significant upgrade (SMI++) was
completed in June 1997. This consisted of re-writing its most
important tool, State Manager, from ADA to C++. In July
1997 it was extensively tested in DELPHI environment.
During that time, the DELPHI experiment control was fully
converted from using the 'old' version of SMI to the upgraded
version SMI++. At that time it was also adopted by BaBar

B. Franek is with PPD, Rutherford Appleton Laboratory, Chilton, Didcot,
UK (telephone: +44-1235-445643, e-mail: B.Franek@rl.ac.uk).

C. Gaspar is with PH, CERN, Geneva, Switzerland (telephone: +41-22-
7672082, e-mail: Clara.Gaspar@cern.ch).

experiment [3] at SLAC for the design and implementation of
their Run Control. From then on, it has been further upgraded
in smaller steps, increasing its flexibility, capabilities and
efficiency.

Fig. 1. Basic concepts of SMI++

 Recently, all four LHC experiments at CERN [4]-[7] decided
to use it either fully or partially for their experiment control.
Through this use by major particle experiments and continuous
user feedback, SMI++ has become a well proven, robust and
time tested tool.

II. BASIC CONCEPTS
The real world to be controlled is typically a set of concrete

entities such as hardware devices or software tasks. In SMI++
framework this world is described as a collection of objects
behaving as Finite State Machines (FSM). These objects are
called associated objects because they are associated with an

SMI++
Object Oriented Framework for Designing and

Implementing Distributed Control Systems
B. Franek, C. Gaspar

actual piece of hardware or a real software task. Each of these
objects interacts with the concrete entity it represents, through
a so called proxy process. The proxy process provides a bridge
between the real and the SMI++ world while fulfilling two
functions. Firstly it follows and simplifies the behavior of the
concrete entity and secondly it sends to it commands
originating from the associated object.

By analogy, the control system to be designed is conceived
as a set of abstract (or logical) objects behaving as FSMs.
They represent abstract entities and contain the control logic.
They can also send commands to other objects (associated or
abstract)

Fig. 2. Basic concepts of SMI++. Hierarchy of domains.

The main attribute of an SMI++ object is its state. In each
state it can accept commands that trigger actions. An abstract
object, while executing an action, can send commands to other
objects, interrogate the states of other objects and eventually
change its own state. It can also spontaneously respond to state
changes of other objects. The associated objects only pass on
the received commands to the proxy processes.

In order to reduce complexity of large systems, logically
related objects are grouped into SMI++ domains. In each
domain, the objects are organized in a hierarchical structure
and form a subsystem control. Usually only one object (top
level object) in each domain is accessed by other domains. The
final control system is then constructed as a hierarchy of

SMI++ domains. These basic concepts are graphically
summarized in Fig. 1. and Fig. 2.
 The framework consists of a set of tools. The most
important are State Manager Language (SML), State Manager
process (SM) and Application Program Interface (API).

III. STATE MANAGER LANGUAGE
The tool used to formally describe the object model of the

real world and of the control system is State Manager
Language .

Fig. 3. Example of SML code

 This language allows for detailed specification of the objects
such as their states, actions and associated conditions. The
main characteristics of this language are:

• Finite State Logic
Objects are described as finite state machines. The main

attribute of an object is its state. Commands sent to an object
trigger object actions that can bring about a change in its state.

• Sequencing
An action performed by abstract object is specified as a

sequence of instructions. These consist mainly of commands
sent to other objects and of logical tests on states of other
objects. Commands sent to objects representing concrete

entities (associated objects) are sent off as messages to the
proxy processes.

• Asynchronous behavior
In principle, all actions proceed in parallel. A command sent

by object-A to object-B does not suspend the instruction
sequence of object-A (i.e. object-A does not wait for
completion of the command sent to object-B before it
continues with its instruction sequence). Only a test by object-
A on the state of object-B suspends the instruction sequence of
object-A until object-B reaches a stable state.

• AI-like rules
Each object can specify logical conditions based on states of

other objects. These, when satisfied, will trigger an execution
of the action specified in the condition. This provides the
mechanism for an object to respond to unsolicited state
changes of other objects in the system.

Example of SML code is shown in Fig. 3.

IV. STATE MANAGER PROCESS
This is the key tool of the SMI++ framework. At run-time, it

organizes and synchronizes activities performed by
independent hardware components assigned to the domain and
possibly objects in other domains. It does this by using the
SML code for the domain. It responds to external events and
'drives' the control system by following the coded control logic
and by sending the necessary commands to proxies and objects
in other domains. It was designed using an Object Oriented
design tool (Rational Rose/C++) [8] and coded in C++. Its
main C++ classes are shown in Fig. 4. They are grouped into
two class categories:

• SML Classes
These classes represent all the elements defined in the

language such as states, actions, instructions etc. They are all
contained within the SMIObject class (representing SMI++
objects). At the startup of the process, they are instantiated
from the SML code.

• Logic Engine Classes
Based on external events, these classes 'drive' the

instantiations of the language classes.
CommHandler takes care of all the communication issues.

It detects state changes in remote SMI++ objects and 'feeds' the
state queue (StateQ). It receives external actions coming from
remote objects or from an operator and 'feeds' the relevant
queue (ExternalActionQ). It also communicates the state
changes in local SMI++ objects to the outside world and sends
commands from local SMI ++objects to remote objects.

Scheduler takes the information from the state and action
queues and operates on the SMIObject instantiations in such a
way that in effect each local object executes its own thread.

SMIObject
(from SML)

Scheduler

When
Handler

External
ActionQ

StateQ

If
Handler

1

n

1

1

1
1

1 1

1

1

Comm
Handler

Executable
ObjQ

n

11

n

 Fig. 4. Main classes of the State Manager.

V. APPLICATION PROGRAM INTERFACE

There are two API libraries available to application designers,
in C, C++ and FORTRAN:

1. SMIRTL library
It provides the routines used by proxies to connect and to

transmit state changes to their associated objects in the SMI++
world and to receive commands from them.

2. SMIUIRTL library
It provides the routines used by the processes that require

information about the states of objects in the running system.
This information is provided in an asynchronous manner – the
process is notified about the state change as soon as it happens.
The library also provides the routines to send commands to
any object in the running system. An example of such a
process is a user interface.

There is a generic User interface provided. It is
configurable, i.e. the monitored objects can be selectively
displayed, moved around the display etc. It is based on Motif.
However, we found from experience, that users generally
prefer to write their own user interfaces tailored to the specifics
of their control systems.

VI. DISTRIBUTED ENVIRONMENTS

State Manager processes representing SMI++ domains can
run on a variety of computer platforms. The cooperation

between the domains including all exchanges between objects,
are embedded in the SMI++ system. All issues related to
distribution and heterogeneity of platforms are transparently
handled by the underlying communication system DIM [9] on
top of TCP/IP. The asynchronous communication mechanism
allows the objects to operate in parallel when required.

At run time, no matter where a SMI++ process (State
Manager or proxy) runs, it is able to communicate with any
other process in the system independently of where the
processes are located. At user level, the name of the object and
its domain uniquely determine its location (address). Processes
can move freely from one machine to another and all
communications are automatically re-established. This feature
also allows for machine load balancing.

The communication layer also provides an automatic
recovery from crash situations such as restarting a process.

SMI++ is available on any mixed environments comprising:
VMS (VAX and ALPHA) and UNIX flavors (OSF, AIX,
HPUX, SunOS, Solaris), Linux, Windows, OS9, LynxOS and
VXWorks

VII. USE OF SMI++ IN DELPHI
In DELPHI the full online system was designed and

implemented using this framework. The various areas of
DELPHI have been mapped into SMI++ domains: sub-detector
domains, DAS domain, SC domain, TRIGGER domain, etc.
The full system consisted of about 1000 objects in 50 different
domains and distributed over 40 computers.

A high level of automation of the experiment's control
system was very important in order to avoid human mistakes
and to speed up standard procedures.

Using the SMI++ framework, the creation of a top level
domain ‘BIG BROTHER’ which contained the logic allowing
interconnection of the underlying domains (LEP, DAS, SC,
etc.) was a relatively easy task.

Under normal running conditions BIG BROTHER piloted
the system with minimal operator intervention. During test and
setup periods the human operator effectively replaced the top-
level object and using the user-interfaces he could send
commands to any SMI++ domain.

VIII. USE OF SMI++ IN BABAR
BaBar is a detector that has been designed and built by a

large international collaboration of physicists. The
collaboration includes over 550 physicists and engineers from
the USA, Canada, China, France, Germany, Italy, Norway,
Russia, and the United Kingdom. There are currently 72
collaborating institutions. The detector is exploiting the PEP-II
facility at SLAC, Stanford, California, USA. Its primary
purpose is to study matter-antimatter asymmetry in electron-
positron collisions. It does this by collecting and subsequent
studying collision events in which pairs of B mesons are
produced. Since its startup in 1999 it has so far collected 200

million of such events. The detector consists of many complex
sub-systems and weights 1200 ton.
 The Run Control was designed, using the SMI++
framework, during 1997-1998 and the first prototype was
installed in the second half of 1998, ready for the subsystem
groups to test their equipment.

Partial, simplified and SMI++ biased view of the system is
shown in Fig. 5. At the top of the hierarchy is SMI++ domain
which in Fig. 5. is called ‘Master’. It monitors and controls the
BaBar detector hardware such as HV power supplies through
the subdetector domains (DCH, DRC,…) It monitors and
controls the Data Acquisition system of the BaBar detector
through set of proxy processes (see oval shapes in the Fig. 5.).
It also communicates with a database from where it retrieves
parameters needed for various running conditions. It also
monitors the status of the PEP-II accelerator. These tasks are
again performed using proxy processes. Under normal running
conditions during data-taking, ‘Master’ monitors, synchronizes
and controls its subsystems fully automatically with minimal
human intervention. The most important input for this
operation is the status of PEP-II accelerator.

Fig. 5. Schematic diagram of BaBar Run Control

The ‘Master’ controls yet another part of the BaBar Run

Control which handles the calibration of sub-detectors. For the
lack of space and in the interest of simplicity, it is not shown in
Fig. 5. It consists of 7 domains and dozens of proxy processes.

Since its first prototype, the BaBar Run Control has been
developed in response to the experience gained from running
the experiment. The inherent flexibility and modularity of the

underlying tool, SMI++, made this development a relatively
easy task.

IX. USE OF SMI++ IN LHC EXPERIMENTS
The four LHC experiments at CERN have combined efforts

by creating a common control project – the Joint Controls
Project – JCOP, in order to develop a control Framework that
will be used by different sub-systems to control their
equipment.

JCOP has chosen SMI++ as a Finite State Machine toolkit to
complement the commercial SCADA (Supervisory Control
and Data Acquisition) system that provides the basis for
implementing the common control Framework.

The selected SCADA system – PVSS II, provides very
useful functionality, like a run-time data base, alarm handling,
archiving, a user interface builder, etc but no tools for abstract
behavior modeling. SMI++ has been integrated with PVSSII
and can thus be used as a component of the Framework.

In this Framework, SMI++ by means of the PVSSII toolkit,
has been complemented with a graphic tool to edit and
generate the SML code and with a database that allows the
archiving of the objects and their states. In order to cope with
the common requirements of the four experiments, standard
objects are also included by default in all SMI++ domains,
providing standard functionality like partitioning, i.e. allowing
sub-systems to be excluded or included in the control hierarchy
or the enabling/disabling of devices.

All four experiments will use the Finite State Machine
component (SMI++) of the framework but to different degrees:
ATLAS and CMS will use it for the monitoring and control of
their Detector Control Systems (DCS), while LHCb and
ALICE will use it for the automation of the complete
experiment. The schematic view of the LHCb control
hierarchy is shown in Fig. 6. as an example.

Fig. 6. Schematic diagram of control hierarchy of LHCb experiment

X. CONCLUSION
 The SMI++ framework is a powerful tool which, while

merging the concepts of object modeling and finite state
machines, allows the implementation of a homogeneous,
integrated control system by providing a standardized

approach to the control of all types of devices from hardware
equipment to software tasks. From a logical point of view, all
devices are mapped into, controlled and monitored by, and
integrated into higher level control entities. These entities are
then responsible for the correlation of events and for the
overall coordination, automation and operation of the full
system in its different running modes. The system is typically
distributed over a set of heterogeneous platforms.

This is achieved by using various SMI++ tools i.e. State
Manager Language, State Manager etc.

The SMI++ framework has become a time tested, robust
tool through its use by major particle experiments: the
DELPHI experiment at CERN in the recent past, the BaBar
experiment at SLAC, which is currently using it in production
and finally all four LHC experiments at CERN which are now
using it for the design of either full or partial experiment
control.

XI. ACKNOWLEDGMENT
We would like to thank some of our colleagues at CERN for

fruitful discussions. In particular to Ph. Charpentier, M.
Jonker, P. Vande Vyvre and A. Vascotto. The ever growing
SMI user community also deserves thanks for their valuable
feedback.

XII. REFERENCES
[1] J. Barlow et al., "Run Control in MODEL: The State Manager," IEEE

trans.nucl.sci., 36, pp. 1549-1553.
[2] DELPHI Collaboration, P. Aarnio et al., "The DELPHI Detector at LEP",

Nuclear Instruments and Methods in Physics Research., A303, pp. 233-
276.

[3] BABAR Collaboration, B. Aubert et al, "The BABAR detector," in
Nucl. Instr. Meth. A, 479, 2002, pp. 1-116.

[4] ALICE Technical Proposal for A Large Ion Collider Experiment at the
CERN LHC, CERN/LHCC/95-71

[5] ATLAS Technical Proposal, CERN/LHCC/94-43
[6] CMS Technical Proposal for Compact Muon Solenoid at the CERN

LHC, CERN/LHCC/94-38
[7] LHCb – the Large Hadron Collider beauty experiment, Reoptimised

Detector Design and Performance, CERN/LHCC 2003-030
[8] Rational Rose/C++, Rational Software Corporation, 2800 San Tomas

Expressway, Santa Clara, CA 95051-0951, USA
[9] C. Gaspar, M. Donszelmann, "DIM – A Distributed Information

Management System for the DELPHI experiment at CERN,"
Proceedings if the IEEE Eight Conference REAL TIME ’93 on Computer
Applications in Nuclear, Particle and Plasma Physics., Vancouver,
Canada

