
SMI++ Object Oriented Framework for Designing and Implementing
Distributed Control Systems

B. Franek� and C. Gaspar�
�CERN, European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland

�Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, Great Britain

Abstract

In the SMI++ framework, the real world is viewed as a
collection of objects behaving as finite state machines. These
objects can represent real entities, such as hardware devices or
software tasks, or they can represent abstract subsystems. A
special language (SML) is provided for the object description.
The SML description is then interpreted by a Logic Engine
(coded in C++) to drive the Control System. SMI++ objects can
run in a variety of platforms all communication being handled
transparently by an underlying communication system - DIM .
This framework has been used by the DELPHI experiment at
CERN [1] for the experiment control. A significantly upgraded
version is now being used by Babar experiment at SLAC [2].

I. INTRODUCTION

SMI++ is based on the original State Manager concept
[3] which was developed by the DELPHI experiment in
collaboration with the DD/OC group of CERN.

In this concept, the real-world system to be controlled
and the control system to be designed is described in terms
of objects behaving as Finite State Machines. Objects can
represent concrete entities, for example an hardware device
or abstract entities like a logical sub-system. The objects
representing concrete entities interact with the hardware they
model and control through associated processes or proxies.

The main attribute of an SMI object is its state. Commands
sent to an object trigger actions that can bring about a change
in its state. Objects can also spontaneously respond to state
changes of other objects. The objects are typically organised
in hierarchical structures called domains. A fully automated
control system can be achieved by a top-level domain controlling
all underlying domains.

The object model of the real-world and control system is
described using State Manager Language (SML). This language
allows detailed specification of the objects such as their states,
actions and associated conditions. The SML code is parsed and
translated into a database that is then used by a generic ’Logic
Engine’. Each logic engine drives an SMI Domain.

The logic engine has been designed using an Object
Oriented design tool (Rational Rose/C++) [4] and coded in
C++ language. It uses the translated SML representation to
instantiate the required objects and then responds to external
events to drive the object model of the control system. It is
often advantageous to build the application as a collection
of cooperating Logic Engines running on different computer

platforms. The communication between SMI Domains is
embedded in the SMI system. All issues related to distribution
and heterogeneity of platforms are transparently handled by the
underlying communication system - DIM [5].

SMI++ and DIM also offer a set of graphical tools to
implement, configure, test and monitor the control system.

A previous version of this concept (SMI) has been used by
the DELPHI experiment at CERN (since 1990) to control sub-
systems with different constrains such as safety critical or real-
time. The full experiment is controlled using this mechanism
up to complete automation. It is a complex system consisting
of 1000 objects organized in 50 SMI domains and distributed
over 40 machines [6]. SMI++ is also being used by the BaBar
experiment at SLAC for their design of run control.

II. SMI++
SMI++ is a framework for designing and implementing

distributed control systems. It provides:

� A method based on a special language to describe the
controlled world and to code the control logic.

� A set of tools to implement and test the control system.

The SMI++ method combines two concepts: Objects and
Finite State Machines (FSM). The real world to be controlled,
being typically a set of hardware devices and software tasks,
is decomposed into well defined entities (objects). The objects
behave as Final State Machines. The control system is equally
conceived as a set of abstract (or logical) objects behaving as
FSM’s. These objects contain the control logic and can send
commands to other objects

In order to reduce complexity of large systems, logically
related objects are grouped into SMI domains. In each domain,
the objects are organised in a hierarchical structure and form a
subsystem control. Usually only one object (top level object)
in each domain is accessed by other domains. The final control
system is then constructed as a hierarchy of SMI domains.

Proxy processes provide the abstractions of the hardware
components in the SMI world and implement the actual actions
on the hardware.

User Interfaces allow the control and visualization of the
system.

This framework allows an easy reconfiguration of the system:
changes in the hardware can be easily integrated by modifying
or replacing proxies and modifications in the control logic by

changing the SML code. The decoupling between the actual
actions on the hardware (done by the Proxy Processes) and the
control logic (residing in the SMI objects) makes the evolution
of a system from its first test phase up to the final complexity a
very smooth process. The basic concepts of the framework are
graphically outlined in Figure 1.

Hardware devices

Obj Obj
Obj

SMI Domain

SMI Domain

Obj

Obj

Obj

Proxy

Fig. 1 Basic concepts of SMI++

A. State Manager Language SML

The object model of the control system is described using
State Manager Language (SML). This language allows detailed
specification of the objects such as their states, actions and
associated conditions. The main characteristics of this language
are :

� Finite State Logic

Objects are described as finite state machines. The only
attribute of an object is its state. Commands sent to an object
trigger actions that can bring about a change in its state.

� Sequencing

An action on an abstract object is specified by a sequence
of instructions, mainly consisting of commands sent to other
objects and logical tests on states of other objects. Actions
on objects representing hardware components are sent off as
messages to the Proxy Processes.

� Asynchronous

Several actions may proceed in parallel: a command sent
by object-A to object-B does not suspend the instruction
sequence of object-A. Only a test by object-A on the state of

object-B suspends the instruction sequence of object-A until
object-B reaches a stable state.

� AI-like rules

Each object can specify logical conditions based on states of
other objects. These when satisfied will trigger an action on
the local object. This provides the mechanism for an object to
respond to unsolicited state changes of its environment.

!- Example of SML code

object : RUN_CONTROL
state : READY
action : START_RUN
do MOUNT TAPE
if TAPE not in_state MOUNTED
do MOUNT_ERROR ERROR_OBJ
terminate_action/state=ERROR

endif
do START READOUT_CONTROLER
if READOUT_CONTROLER in_state RUNNING
terminate_action/state=

RUN_IN_PROGRESS
...

state : RUN_IN_PROGRESS
when TAPE in_state FILE_FULL
do PAUSE_RUN

when READOUT_CONTROLER in_state ERROR
do ABORT_RUN

action : ABORT_RUN
...

object : READOUT_CONTROLER/PROXY
state : READY
action : START
...

state : RUNNING
action : PAUSE
action : ABORT
...

B. Tools
The SMI framework provides a set of tools to generate and

implement the control system, as shown in Figure 2.

1) SML translator

The description and behaviour of the objects coded in SML
is parsed by the SML translator. It also translates the code into a
Domain Description intermediate file which is then used at run-
time by the State Manager (see below) to drive the model of the
Domain.

2) Proxy generator

From the SML code it generates skeletons for all the proxies
in the domain. The user can then plug-inspecific code to actually

drive the hardware and link with an SMI++ run time library to
produce the proxy.

3) GUI

A generic User interface is also provided. It allows the
control and monitoring of the objects in a specific domain.
The states of the objects can be visualized and commands
can be sent to each object. The interface is configurable; the
objects can be selectively displayed, moved around the display
and different colors can be selected for different states of the
objects.

SML code

SML
translator

Domain
Description

Logic
Engine

Proxy
generator

Proxy
skeletton

User
 code

SMI++
 RTL

+

+

Proxy SMI GUI

Run Time

U

U

T

T

T T

G

G

G

T

U - User code
T - Provided in the Toolkit
G - Generated by the tools

Fig. 2 SMI++ Tools

4) State Manager process

This is the key tool of the SMI++ framework. At run-time,
it organizes and synchronizes activities performed by the
independent hardware components assigned to the domain and
possibly objects in other domains. It does this by using the
translated SML code for the domain. It responds to external
events and ’drives’ the control system by following the coded
control logic and sending the necessary commands to proxies
and objects in other domains. It was designed using an Object
Oriented design tool (Rational Rose/C++) and coded in C++.
It’s main C++ classes are shown in Figure 3. They are grouped
into two class categories :

� SML Classes

These classes represent all the elements defined in the
language such as - states, actions, instructions etc. They are
all contained within the SMIObject class (representing SMI

objects). At the startup of the process, they are instantiated
from the translated SML code.

� Logic Engine Classes

Based on external events, these classes ’drive’ the
instantiations of the language classes.
CommHandler takes care of all the communication issues.
It detects state changes in remote SMI objects and ’feeds’
the state queue (StateQ). It receives external actions coming
from remote objects or from an operator and ’feeds’ the
relevant queue (ExternalActionQ). It also communicates the
state changes in local SMI objects to the outside world and
sends commands from local SMI objects to remote objects.
Scheduler takes the information from the state and action
queues and operates on the SMIObject instantiations in such
a way that in effect each local object executes its own thread.

SMIObject

Scheduler

CommHandler

StateQ

ExecutableObjQ

WhenHandler

IFHandler

External
ActionQ

Fig. 3 State Manager’s main classes

III. DISTRIBUTED ENVIRONMENTS

Current computer control systems have very often a
highly distributed architecture consisting of workstations
interconnected by a local area network.

SMI takes advantage of distribution, SMI Domains can run
on a variety of computer platforms. The cooperation between
SMI Domains including all exchanges between objects, are
embedded in the SMI system. All issues related to distribution
and heterogeneity of platforms are transparently handled by
the underlying communication system -DIM (Distributed
Information Management System) .

DIM’s aim is to provide interoperability between

applications on different machines in heterogeneous distributed
environments.

The DIM system was designed and implemented according
to the following characteristics :

� Efficiency

The communication mechanism of DIM was chosen having in
mind the asynchronous character of SMI objects and the speed
in reacting to changes or error conditions in the system. The
solution we thought the best is for clients to declare interest
in a service provided by a server only once (at startup), and
get updates at regular time intervals or when the conditions
change. I.e. an asynchronous communication mechanism
allowing for task parallelism and multiple destinationupdates.

� Transparency

At run time no matter where a process runs, it is able
to communicate with any other process in the system
independently of where the processes are located. Processes
can move freely from one machine to another and all
communications are automatically reestablished. (this
feature also allows for machine load balancing).

� Reliability and Robustness

In an environment with many processes, processors and
networks, it often happens that a process, a processor or
a network link breakes down. The loss of one of these
items should not perturbate the rest of the application. DIM
provides an automatic recovery from crash situations or the
migration of processes.
DIM uses a publish/subscribe mechanism. Any process can

publish (Server) information and any interface (or any other
process) can subscribe (Client) to this information. A unit of
information is called a ”Service”. A Name Server keeps track
of all the Servers and Services available in the system.

Servers ”publish” their Services by registering to the Name
Server (Normally once at startup).

Clients ”subscribe” to Services by asking the Name Server
which Server provides the Service and then contacting directly
the Server. Client’s Services are then kept up-to-date in an event
driven mode or at regular time intervals. Clients can also send
commands to servers.

DIM is responsible for most of the communications inside the
DELPHI Online System, it is used by SMI in order to transfer
object states and commands, by the user interfaces in order to
access SMI or any other necessary information and by many
other processes for monitoring or processing activities. In the
DELPHI environment it makes currently available around 30000
Services provided by 450 Servers. Dim is also being used by
other experiments at CERN .

IV. SMI’S USE IN DELPHI
In DELPHI the full online system is controlled through this

mechanism, the various areas of DELPHI have been mapped into
SMI domains: sub-detector domains, DAS domain, SC domain,
TRIGGER domain, etc. The full system comprises about 1000

SMI objects in 50 different domains and running on 40 machines.
A high level of automation of the experiment’s control system

is very important in order to avoid human mistakes and to speed
up standard procedures.

Using the SMI mechanism the creation of a top level
domain - BIG BROTHER - containing the logic allowing the
interconnection of the underlying domains (LEP, DAS, SC,
etc.) was a relatively easy task.

Hardware devices

Det 1 Det n. . .

DAS SC

LEP

Trigger To LEP

BIG
BROTHER

Fig. 4 Big Brother Control

Under normal running conditions BIG BROTHER pilots the
system with minimal operator intervention as shown in Figure
4. In other test and setup periods the operator becomes the top-
level object and using the user-interfaces he can send commands
to any SMI domain.

V. IMPLEMENTATION AND AVAILABILITY
The first prototype of SMI++ was completed in June

1997. In July 1997 it has been extensively tested in DELPHI
environment. During that time, the DELPHI experiment
control was fully converted from the ’old’ version of SMI to
the upgraded version SMI++.

SMI++ is available on any mixed environments comprising :
VMS (VAX and ALPHA) and UNIX flavors (OSF, AIX, HPUX,
SunOS, Solaris)

DIM is already available in the above platforms and on
OS9,LINUX and LynxOS and is being ported to WindowsNT
and VXWorks.

Other available tools are :
A DIM Display allowing the visualization of all the servers

and clients in a certain DIM environment (including SMI and
driver processes). Very useful for debugging applications.

A DIM to WWW gateway, allowing access to all DIM
services (including SMI states). The WWW page can be written
in HTML with specific DIM tags containing the service name.
The DIM tags are translated when the page is loaded.

VI. CONCLUSIONS
SMI is a powerful tool for designing and implementing

control systems, it merges the concepts of object modeling and
finite state machines.

The SMI system provides a simple language to model the

application and a set of tools to compile, configure and run your
applications on a variety of platforms.

The full control of the DELPHI experiment at CERN
is implemented using this system, SMI proved capable of
handling the control of different environments such as: data
acquisition (including run control), slow controls, trigger, etc.

Due to the homogeneity in the control of the different
parts of DELPHI it was possible to interconnect the different
parts and completely automate the DELPHI operations. It also
considerably reduced the efforts on maintenance and upgrade
of the complete control system of DELPHI.

SMI++ implements extensions to the SMI concept and was
re-designed for use by the BaBar experiment at SLAC. The main
extensions visible to a user are related to more configuration
capabilities at run-time, availability on a larger set of platforms
(including heterogeneous distributedenvironments) and a higher
support on graphical tools.

VII. ACKNOWLEDGMENTS
We would like to thank some of our colleagues at CERN for

fruitful discussions. In particular to Ph. Charpentier, M. Jonker,
P. Vande Vyvre and A. Vascotto.

VIII. REFERENCES

[1] DELPHI Collaboration, Aarnio, P. et al. (1991). The DELPHI
Detector at LEP. In: Nuclear Instruments and Methods in Physics
Research A303, pp. 233-276.

[2] BaBar Technical Design Report SLAC-R-95-457 March, 1995
[3] J. Barlow et al.(1989). RunControl in MODEL: The State Manager

IEEE trans.nucl.sci.36, pp. 1549-1553.
[4] Rational Rose/C++, Rational Software Corporation, 2800 San

Tomas Expressway, Santa Clara, CA 95051-0951, USA
[5] Gaspar, C. and Dönszelmann, M. (1993). DIM - A Distributed

Information Management System for the DELPHI experiment at
CERN. In: Proceedingsof the IEEE Eight ConferenceREAL TIME
’93 on Computer Applications in Nuclear, Particle and Plasma
Physics. Vancouver, Canada.

[6] T. Adye at al. (1992). The DELPHI Experiment Control
Proceedings of the International Conference on Computing
in High Energy Physics ’92. Annecy, France.

