SMI++

A Tool for the Automation of large
distributed control systems

Clara Gaspar, May 2010

I Some requirements of large control
systems

I SMI++
I Methodology
I Tools

I Example: Usage in LHC experiments
I Some important features
I Conclusions

Clara Gaspar, May 2010

@‘ Some Requirements

I Large number of devices/IO channels
® Need for Distributed Hierarchical Control

| De-composition in Systems, sub-systems, ..., Devices
| Local decision capabilities in sub-systems

I Large number of independent teams and very different
operation modes

% Need for Partitioning Capabilities (concurrent usage)
I High Complexity & Non-expert Operators
% Need for Full Automation of:

| Standard Procedures
| Error Recovery Procedures

®» And for Intuitive User Interfaces

Clara Gaspar, May 2010 33

1 Method

I Classes and Objects

| Allow the decomposition of a complex system into
smaller manageable entities

I Finite State Machines

| Allow the modeling of the behavior of each entity and
of the interaction between entities in terms of
STATES and ACTIONS

I Rule-based reasoning

| React to asynchronous events
(allow Automation and Error Recovery)

Clara Gaspar, May 2010 4

i Method (Cont.)

I SMI++ Objects can be:
| Abstract (e.g. a Run or the DCS System)
| Concrete (e.g. a power supply or a femp. sensor)

I Concrete objects are implemented externally
either in "C", C++, or PVSS

I Logically related objects can be grouped inside
"SMI domains" representing a given sub-system

Clara Gaspar, May 2010 95

@E‘ SMI++ Run-time Environment

I Device Level: Proxies
| C, C++, PVSS ctrl scripts
| drive the hardware:
| deduceState
| handleCommands

I Abstract Levels: Domains

| Internal objects
| Implement the logical model
| Dedicated language

I User Interfaces
| For User Interaction

Hardware Devices

Clara Gaspar, May 2010 64

@) SMI++ - The Lanqua

I SML -State Management Language

| Finite State Logic

| Objects are described as FSMs
their main attribute is a STATE

| Parallelism
| Actions can be sent in parallel to several objects.

| Synchronization and Sequencing

| The user can also wait until actions finish before sending the
hext one.

| Asynchronous Rules

| Actions can be triggered by logical conditions on the state of
other objects.

Clara Gaspar, May 2010 77

@‘ SML example

I Sub System:

Device:

class: PowerSupply /associated

state: UNKNOWN /lead_state
state: OFF

action : SWITCH_ON
state: ON

action : SWITCH_OFF
state: TRIP

action : RESET

object: PS1is_of _class PowerSupply

class: HighVoltage
state: NOT_READY /nitial_state
action: GOTO_READY
do SWITCH_ON PS1
if (PS1in_state ON) then
move_to READY
endif
move_to ERROR
state: READY
when (PS1in_state TRIP) do RECOVER
when (PS1 not_in_state ON) move_to NOT_READY
action: RECOVER
do RESET PS1
do SWITCH_ON PS1

action: GOTO_NOT_READY

state: ERROR

object: SubDetHV is_of class HighVoltage

Clara Gaspar, May 2010 84

@) smL example (many objs)

I Devices:

class: PowerSupply /associated

state: UNKNOWN /dead_state
state: OFF

action : SWITCH_ON
state: ON

action : SWITCH_OFF
state: TRIP

action : RESET

object: PS1is_of _class PowerSupply
object: PS2is_of class PowerSupply
object: PS3is_of class PowerSupply

objectset: PSS {PS1, PS2, PS5, ...}

I Objects can be dynamically
included/excluded in a Set

I Sub System:

class: HighVoltage
state: NOT_READY /nitial_state
action: GOTO_READY
do SWITCH_ON all_in PSS
if (all_in PSS in_state ON) then
move_to READY
endif
move_to ERROR
state: READY
when (any_in PSS in_state TRIP) do RECOVER
when (any_in PSS not_in_state ON) move_to NOT_READY
action: RECOVER
do RESET all_in PSS
do SWITCH_ON all_in PSS

action: GOTO_NOT_READY

state: ERROR

object: SubDetHV is_of class HighVoltage

Clara Gaspar, May 2010 9

@‘ SML example (automation)

I External Device:

I Objects in different domains can be
addressed by: <domain>::<object>

object: LHC::STATE /associated
state: UNKNOWN /dead_state
state: PHYSICS
state: SETUP
state: OFF

I Sub System:

object: RUN_CONTROL
state: TEST_MODE

when (LHC::STATE in_state PHYSICS) do PHYSICS
action: PHYSICS
do GOTO_READY SubDetHV

move_to PHYSICS _MODE
state: PHYSICS_MODE

Clara Gaspar, May 2010

195

@E‘ SMI++ Run-time Tools

I Device Level: Proxies
| C, C++, PVSS ctrl scripts

| Use a Run Time Library: smirtl
To Communicate with their domain

@ I Abstract Levels: Domains

| A C++ engine: smiSM - reads the
translated SML code and instantiates
the objects

I User Interfaces

| Use a Run Time Library: smiuirtl
To communicate with the domains

I All Tools available on:
| Windows, Unix (Linux), etc.

% I All Communications are dynamically
vy (re)established

Hardware Devices

Clara Gaspar, May 2010 11,

@) SMI++ History

I 1989: First implemented for DELPHI in ADA
Thanks to M. Jonker and B. Franek in Delphi and the CERN DD/OC group
(S. Vascotto, P. Vande Vyvre et al.)

I DELPHTI used it in all domains: DAQ, DCS, Trigger, eftc.

I A top level domain:
Big-Brother automatically piloted
the experiment

B 1997: Rewritten in C++

I 1999: Used by BaBar for the
Run-Control and high level
automation (above EPICS)

I 2002: Integration with PVSS
for use by the 4 LHC exp.

=» Has become a very powerful, time-tested, robust, toolkit

Clara Gaspar, May 2010 12,

©] LHC Exp
%1 LHC Exp.: Framework
I The JCOP Framework is based on:
I SCADA System - PVSSII for:

(

\
Device Units
_A

I
\ I

Control Units
A

Device Description (Run-time Database)

Device Access (OPC, Profibus, drivers) + DIM
Alarm Handling (Generation, Filtering, Masking, etc)
Archiving, Logging, Scripting, Trending

User Interface Builder

Alarm Display, Access Control, etc.

I SMI++ providing:

Abstract behavior modeling (Finite State Machines)
Automation & Error Recovery (Rule based system)

Clara Gaspar, May 2010 1?3

Status & Alarms

@ Ex: Generic LHC(b) Architecture

CUIllHNdriuds

Legend:

SubDet1
GAS

@

Clara Gaspar, May 2010 1?4

@ Device Units

1 Provide access to "real” devices:

I The Framework provides (among others):

| "Plug and play"” modules for commonly used equipment.
For example:

| CAEN or Wiener power supplies (via OPC)
| LHCb CCPC and SPECS based electronics (via DIM)

| A protocol (DIM) for interfacing
"home made" devices. For example:
| Hardware devices like a calibration source

| Software devices like the Trigger processes
(based on LHCb's offline framework - GAUDI)

| Each device is modeled as a Finite State Machine
= Corresponds to an SMI++ Proxy

Clara Gaspar, May 2010 1?5

Hierarchical control @

1 Each Control Unit:

I Is defined as one or more Finite State Machines
= Corresponds to an SMI++ Domain

I Can implement rules based on its children's states

I Ingeneral it is able fo:
| Summarize information (for the above levels)
| "Expand” actions (to the lower levels)

| Implement specific behaviour
& Take local decisions

| Sequence & Automate operations
| Recover errors

| Include/Exclude children (i.e. partitioning)
| Excluded nodes can run is stand-alone

| User Interfacing
| Present information and receive commands

Clara Gaspar, May 2010

16,

2 PVSS/SMI++ Integration

i smi_object_states -r =10 x| . . .

Ot Type HVNods o [T I Graphical Configuration
| | of SMI++ Using PVSS
Simple Config Copy from Type: | -l

iinstr_when & E =10f x|

Ohject Parameters yihan

-~ ?Jt;t_lia E:\D‘f AEHD{ IANY j IChiIdren uij,fpej IPuwerSuppIy j Iin_state j ITRIF‘ j do
| 3| = -]
4|[ErROR CLE.
4 =l | S o fo
| =l [] | [] | Sl A =
State: Calar: Acti
[Resd B [l o | | - Hi H
T C— | , ™ Megate Expression
Execute Action: I CONFIGURE j
]
When List: r Go To State: I ERROR j
when { $ANY §PowerSupply in_state TRIFP
ﬂ when [$ANY 5P owerSupply in_state OFF when | $ANY§PowerSupply in state TRIP] move_to ERROR A

3

A | Remaove

Type Cverview | Apply 4] _,lLI
8] 4 cancel
= Easy to learn SML | |

—crlara caspar, viay ZUIU 7

X PVSS/SMI++ Intec

Dewce Edltc-r & Nawgator ﬁl
Running on: Idlat_flﬂ

ration

I Building Hierarchies

Hardweare | Logical Fsh I

é--dgg_an: i I D'STrlbUTed over

= TOP .

- ocs several machines
2S5 ubDet]
D asuban - | "&" means reference to
=8 @Suhaeta

a CU in another system

I Editor Mode:

| Add / Remove / Change
Settings

I Navigator Mode
| Start / Stop / View

Stark/Restart Mode
Stop Mode

R o Start/Restart Tree
Skop Tree

4

[dentity: |dist_f1El:Manager1

Start/Restart Al Stopal |

DM OMNS MNODE: pelheb155. cern.ch |

Mawigator mode Goto Editor |

Cloge |

Gaspar, May 2010 184

@ PVSS/SMI++ Integration

(Uniform look and feel)

=101 %

Wed 18-Maw-200% 1532140

System
) s
o
Sub-System State
Subliet NOT_READY
Subbet? HOT_READY
Subdietd OT_READY
Subietd HOT_READY
Messages

Close |

Clara Gaspar, May 2010

1 Configurable

I Dynamically generated operation panels

199

@ “raw” SMI++ vs JCOP FW

I SMI++ is a very powerful tool

I Tts usage needs some training and experience
| Learn the Language and the tools

| Need to develop software using the libraries
| To interface devices and to build User Interfaces

| Define rules and guidelines for developers

I While if using the JCOP FW:

| No need for software development

| Graphic editing of the objects and their behaviour
| All objects "inherit" the partitioning rules

| JCOP provides training courses

Clara Gaspar, May 2010

29,

@E‘ LHCb Example: Run Control

1 Size of the Control Tree:

I Distributed over ~150 PCs

| ~100 Linux
(50 for the HLT)

| ~B50 Windows
1 >2000 Control Units
I >30000 Device Units

I The Run Control can be seen ass
I The Root node of the tree

®» If the tree is partitioned there can be
several Run Controls.

Clara Gaspar, May 2010 2%,

£} Wision_1: fmFSH FaMOperate..... EEIE LHC ke TO [TET=
State Pilot Tue 16.06c.2000 1kFIES I M 1. o
User: |root m Systam g
] I HES vo NN s e u arrix
Identity: |ECS Manage
1 Sub-System
Sil_lnt Muede: i Fhin Shrakar Activity: Domain
ey W |4pas3 s =] Save
h%;q DR Run Start Time: Trigger Configuration: \ X
—~ i Funini |16-Dec:2008 19,3136 [CosMIES_ Calemy
=-CnF
;.EE”-C s Run Duration: Time Alignment: S b D 1_ 1,
st EHLT we [oooozm ™ TAE half window [0 LOR Ll -pe eC OI“
=- sk a8 HLT
= -[lManionng Mr. Events: Max Nr. Events:
EReconstruction = [0 I Run limited to [0 Events
- ECaibeation Bhaniineing ° °
%-[JTET Mr. Steps Left: Automated Run with Steps: I ACth't
¥ =E;2 s [Step Run with |0 Steps Y
: Cabwation
f— : : d Time: sed for
- LO Rate: HLT Rate: Dead Ti Used f
- Eo™ e Configuring all Sub-Systems
- EOTA S /ﬁ‘}\ Kﬂ\ x
B CER0TA_HY fa = fau o= a
= ECTA Doy i -
+ QT DA FEE) ,/# wyf ' /#' o/ '
-EROTA DA TELLY e Accepts
L EEoTA_DeG Telli R — i i 0 e wasan L command
CJoTa_Runinfe S
& ota Tre = = parameters
W TFC Control | TELL1s| LHCbElog | DataDestination: [0 | pataType:[= -] RunDB|
- DJT.U. Shorage File: |."l]-:q:||e aThebfdalaZ2ARAWLHCHTEST/ O350
157, | 1 SMI
. .| | sub-Detectors: - . ++
1] | » ET | 4| vELoA g veoc (g T | g " g o || orc | g| mcen | f) mcH ﬂ| s | g
™ View A&l Dverees Clasa
ie ey e Trigger Components:
ECAL | 4| HOML | 4| WUDNA | 4| muDNC | | Loou Hlmm |rm ﬂlmr.' ﬂl TPi I
Messages
16-Dec-T008 1531 38 - LHCh smeculing acdon GO _*J
{B-Diac- 3008 1531 30 LECH_TFC eseculmg acion START _TRIGSER il
16-Dic- 2000 18:31.42 - LUCh i £151e IUNINING =] _Close

Clara Gaspar, May 2010 23,

@‘ Features of SMI++

I Task Separation:

I SMI Proxies execute only basic actions -
Minimal intelligence
| Good practice: Proxies know "what" to do but not "when"

I SMI Objects implement the logic behaviour

I Advantages:

| Change the HW
-> change only the Proxy

| Change logic behaviour
sequencing and dependency of actions, etc
-> change only SMTI rules

Clara Gaspar, May 2010 233

@ Features of SMI++

I Sub-system integration

I SMI++ allows the integration of
components at various different levels:

I Device level (SMI++ All the way to the bottom)
| Each Device is modeled by a Proxy

I Any other higher level (simple SMI++ interface)
| A full Sub-system can be modeled by a Proxy

| Examples:
| The Gas Systems (or the LHC) for the LHC experiments
| Slow Control Sub-systems (EPICS) in BaBar

Clara Gaspar, May 2010 24,

“?ﬂ Features of

I Distribution and Robi

I SMI Proxies and SMI
distributed over a larg
heterogeneous machin

I If any process dies/cr
| Its "/dead_state" is pr

class: HighVoltage
state: NOT_READY /Anitial_state
when (any_in PSS in_state TRIP) move_to ERROR
when (all_in PSS in_state ON) move_to READY
action: GOTO_READY
do SWITCH_ON all_in PSS
if (all_in PSS in_state ON) then
move_to READY
endif
move_to ERROR
state: READY

state: ERROR

object: SubDetHV is_of class HighVoltage

I Whena process restarts (even on a different machine)
| All connections are dynamically re-established
| Proxies should re-calculate their states

| SMI Objects will start

in “/initial_state" and can

recover their current state (if rules are correct)

Clara Gaspar, May 2010

295

@‘ Features of SMI++

I Error Recovery Mechanism

I Bottom Up
| SMI Objects react to changes of their children
| In an event-driven, asynchronous, fashion
I Distributed

| Each Sub-System can recover its errors
| Normally each team knows how to recover local errors

I Hierarchical/Parallel recovery

I Can provide complete automation even for
very large systems

Clara Gaspar, May 2010 296

@‘ Conclusions

I SMI++ is:
I A well tested, and very robust tool
I Not only a Finite State Machine toolkit

I But has also "Expert System"” capabilities

| Advantage: Decentralized and distributed
knowledge base

I Using the JCOP FW instead of directly SMI+
+ has many advantages...

Clara Gaspar, May 2010 257

. Spare slides

Clara Gaspar, May 2010

284

| SMI++ Declarations

I Classes, Objects and ObjectSets
B class: <class_name> [/associated]
| <parameter_declaration>
I <state_declaration>
| <when_list>
| <action_declaration>
| <instruction_list>

1 ..
I object: <object_name> is_of_class <class_name>
I objectset: <set_name> [{objl, obj2, ..., objn}]

Clara Gaspar, May 2010 2?9

@‘ SMI++ Parameters

i <parameters>
I SMI Objects can have parameters, ex:
| inT n_events, string error_type
I Possible types:
| int, float, string

I For concrete objects

| Parameters are set by the proxy
(they are passed to the SMI domain with the state)

I Parameters are a convenient way to pass extra
information up in the hierarchy

Clara Gaspar, May 2010 399

@‘ SMI++ States

I state: <state_name> [/<qualifier>]

I <qualifier>

| /initial_state
For abstract objects only, the state the object
takes when it first starts up

| /dead_state
For associated objects only, the state the object
takes when the proxy or the external domain is not
running

Clara Gaspar, May 2010 3§ 1

S| SMI++ Whens

i <when_list>

I Set of conditions that will trigger an object
transition. "when"s are executed in the order
they are declared (if one fires, the others
will not be executed).

I state: <state>
| when (<condition>) do <action>
| when (<condition>) move_to <state>

Clara Gaspar, May 2010 32,

@E‘ SMI++ Conditions

I <condition>
I Evaluate the states of objects or objectsets

| (<object> [not_Jin_state <state>)
| (<object> [not_Jin_state {<statel>, <state2>, ...})

| (all_in <set> [not_Jin_state <state>)

| (all_in <set> [not_Jin_state {<statel>, <state2>, ..})

| (any_in <set> [not_Jin_state <state>)

| (any_in <set> [not_Jin_state {<statel>, <state2>, ..})

| (<condition> and|or <condition>)

Clara Gaspar, May 2010 333

@) sMI++ Actions

I action: <action_name> [(parameters)]

I If an object receives an undeclared action (in
the current state) the action is ignored.

I Actions can accept parameters, ex:
| action: START_RUN (string run_type, int run_nr)
I Parameter types:
| int, float and string
I If the object is a concrete object
| The parameters are sent to the proxy with the action

I Action Parameters are a convenient way to send
extra information down the hierarchy

Clara Gaspar, May 2010 3?4

@) SMI++ Instructions

i <instructions>
1 <do>
1 <if>
I <move_to>
I <set_instructions»
| insert <object> in <set>
| remove <object> from <set>
| <parameter_instructions>
| set <parameter> = <constant>

| set <parameter> = <object>.<parameter>
| set <parameter> = <action_parameter>

Clara Gaspar, May 2010 3?5

@) SMI++ Instructions

I <do> Instruction
I Sends a command to an object.

I Do is non-blocking, several consecutive "do"s
will proceed in parallel.
| do <action> [(<parameters>)] <object>
| do <action> [(<parameters>)] all_in <set>

| examples:
| do START_RUN (run_type = "PHYSICS", run_nr = 123) X

| action: START (string type)
| do START_RUN (run_type = type) EVT_BUILDER

Clara Gaspar, May 2010 396

@) SMI++ Instructions

i <if> Instruction

1 "if"s can be blocking if the objects involved in
the condition are "transiting". The condition
will be evaluated when all objects reach a
stable state.

| if <condition> then
| <instructions>
| else

| <instructions>
| endif

Clara Gaspar, May 2010 34 7

@) SMI++ Instructions

I <move_to> Instruction

I "move_to" terminates an action or a when
statement. It sends the object directly to
the specified state.

| action: <action>
| ...
| move_to <state>

| when (<condition>) move_to <state>

Clara Gaspar, May 2010

384

@‘ Future Developments

I SML Language

I Parameter Arithmetics
| set <parameter> = <parameter> + 2
| if (<parameter> == 5)

I wait(<obj_list)

I for instruction
| for (dev in DEVICES)
| if (dev in_state ERROR) then
| do RESET dev
| endif
| endfor

Clara Gaspar, May 2010

399

@ SML - The Language

I An SML file corresponds to an SMI
Domain. This file describes:

I The objects contained in the domain

| For Abstract objects:
| The states & actions of each

| The detailed description of the logic behaviour of
the object

I For Concrete or External (Associated)
objects

| The declaration of states & actions

Clara Gaspar, May 2010 490

	SMI++
	Outline
	Some Requirements
	Страница 4
	Страница 5
	SMI++ Run-time Environment
	SMI++ - The Language
	SML example
	SML example (many objs)
	SML example (automation)
	SMI++ Run-time Tools
	SMI++ History
	LHC Exp.: Framework
	Ex: Generic LHC(b) Architecture
	Device Units
	Hierarchical control
	PVSS/SMI++ Integration
	Страница 18
	Страница 19
	“raw” SMI++ vs JCOP FW
	LHCb Example: Run Control
	Run Control
	Features of SMI++
	Страница 24
	Страница 25
	Страница 26
	Conclusions
	Spare slides
	SMI++ Declarations
	SMI++ Parameters
	SMI++ States
	SMI++ Whens
	SMI++ Conditions
	SMI++ Actions
	SMI++ Instructions
	Страница 36
	Страница 37
	Страница 38
	Future Developments
	SML – The Language

